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Abstract:We present a new Little Higgs model, motivated by the deconstruction of a five-

dimensional gauge-Higgs model. The approximate global symmetry is SO(5)0 × SO(5)1,

breaking to SO(5), with a gauged subgroup of [SU(2)0L × U(1)0R] × O(4)1, breaking to

SU(2)L×U(1)Y . Radiative corrections produce an additional small vacuum misalignment,

breaking the electroweak symmetry down to U(1)EM . Novel features of this model are: the

only un-eaten pseudo-Goldstone boson in the effective theory is the Higgs boson; the model

contains a custodial symmetry, which ensures that T̂ = 0 at tree-level; and the potential

for the Higgs boson is generated entirely through one-loop radiative corrections. A small

negative mass-squared in the Higgs potential is obtained by a cancellation between the

contribution of two heavy partners of the top quark, which is readily achieved over much

of the parameter space. We can then obtain both a vacuum expectation value of v = 246

GeV and a light Higgs boson mass, which is strongly correlated with the masses of the

two heavy top quark partners. For a scale of the global symmetry breaking of f = 1 TeV

and using a single cutoff for the fermion loops, the Higgs boson mass satisfies 120 GeV

. MH . 150 GeV over much of the range of parameter space. For f raised to 10 TeV,

these values increase by about 40 GeV. Effects at the ultraviolet cutoff scale may also raise

the predicted values of the Higgs boson mass, but the model still favors MH . 200 GeV.
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1. Introduction

The mechanism of electroweak symmetry breaking and the stabilization of the weak scale

are two of the most important unresolved questions in particle physics. The Standard

Model (SM) Higgs boson offers the simplest answer to the first question, but it leaves

the second question unresolved. In fact, the SM Higgs boson is unstable under quantum

corrections, as its mass is naturally driven to the ultraviolet cutoff scale. Over the past

decade a class of theories known as Little Higgs (LH) models has been proposed as a

way to extend and stabilize the SM [1]–[23]. In LH models the Higgs boson is a pseudo-

Goldstone boson of an approximate and spontaneously broken global symmetry. The latter

is explicitly and collectively broken by extended gauge and Yukawa sectors, in such a

way that the Higgs acquires a potential only if two or more couplings in the gauge or

Yukawa sector are simultaneously switched on. Since quadratically divergent one-loop

contributions to the Higgs mass can only arise from diagrams involving one coupling, it
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follows that these have to cancel. This is very similar to the supersymmetric scenario, in

which the superpartners cancel the SM quadratic divergences. However in LH models the

cancellation occurs between particles with the same spin, with interesting and extensively-

studied collider signatures [24]–[27].

Clearly, for a LH model to be realistic the generated Higgs potential must have a

nonzero vacuum expectation value (vev). Furthermore, the electroweak vev v must be much

smaller than the vev f associated with the spontaneous breaking of the larger symmetry

group, since the main goal of any LH model is to naturally generate a hierarchy of scales

between v and the new-physics scale f . This implies that the ratio of the negative mass-

squared, m2, to the quartic coupling, λ, in the Higgs potential must be small in magnitude

compared to f2. Typically in LH models, m2 receives its dominant contribution from

loops with the heavy partner of the top quark (which is required in the theory to cancel

the quadratic divergence from the top-quark loop). However, the dominant contribution

to λ is also typically generated by loops of the same heavy top quark partner, so that a

sufficiently large λ is not generated radiatively. For this reason, other effective operators

are introduced into the theory, whose coefficients depend on the details of the ultraviolet

completion, but whose size can be estimated by naive dimensional analysis. For instance,

in the Moose-type models, such as the Minimal Moose [4], the quartic coupling arises from

plaquette operators; in the Littlest Higgs [5] the quartic coupling arises from a hard mass-

squared for the additional scalars in the theory, which are then integrated out by equations

of motion; and in the Simplest Little Higgs [19] model it arises from a small mass term

for the scalars. One disadvantage of this approach is that the unspecified coefficient of the

new operator introduces an additional degree of unpredictability in the effective theory.

Furthermore, even with the new contribution to λ, there must still be some amount of

cancellation of the contribution to m2 of the heavy top quark partner if one is to obtain a

reasonably light Higgs boson [28].

A second requirement for the Higgs sector is the absence of large isospin violation. This

is usually achieved by enlarging the overall global symmetry group to include SU(2)L ×
SU(2)R, which in a LH model can be done minimally by imposing an SO(5) symmetry [10].

This can create some problems in models with two Higgs doublets, with a potential which

requires their vev’s to be misaligned. This misalignment is a source of custodial isospin

violation, which shows up in the form of dimension-six operators when the heavy states are

integrated out. In Ref. [12] this problem is avoided by constructing a model with a single

Higgs doublet and an approximate custodial SU(2)C , an extension of the Littlest Higgs

with a coset SO(9)/SO(5) × SO(4). The electroweak constraints can also be weakened

by introducing “T-parity”, a new discrete symmetry under which the heavy fields are odd

and the SM fields are even [14, 17, 20]. Then no effective operators are generated from

tree-level exchanges of a single heavy field, since a vertex must contain an even number of

these.

In this paper we introduce a LH model in which the only un-eaten scalar field is

the Higgs boson, electroweak symmetry breaking is fully radiative, and an approximate

custodial symmetry suppresses the sources of nonstandard isospin violation. The model is

based on an SO(5)0 × SO(5)1 global symmetry, of which the [SU(2)0L × U(1)0R]×O(4)1
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subgroup is gauged. The global and gauged symmetry structure is similar to that of

the Custodial Minimal Moose model [10]; however, in our model there is only one non-

linear sigma field, with the result that the Higgs boson is the only spin-zero field in the

theory and there are no plaquette operators. The gauge sector of this model has also

been considered in Ref. [29]. Our model is inspired from the deconstruction of an SO(5)×
U(1)X gauge-Higgs model [30], which uses the fact that the SO(5) structure is the minimal

way to accommodate a gauge-Higgs and custodial symmetry. In addition, it suggests the

inclusion of fermions in terms of SO(5) multiplets, with a simple implementation of the LH

mechanism in the Yukawa sector. The novel feature of this fermion sector is that a second

heavy top quark partner produces canceling contributions to the m2 term in the Coleman-

Weinberg potential, so that it can easily be made small and negative. As a consequence,

the radiative Higgs quartic coupling, although small, is large enough to trigger spontaneous

symmetry breaking with v ≪ f , and the effective theory is more predictive than in LH

models in which the quartic coupling arises from additional operators. In particular, the

Higgs boson is naturally light in this model, with a mass that depends predominantly on

a single mixing angle, sin2 θt, in the top quark sector. For f = 1 TeV and 10 TeV, we find

MH . 150 GeV and MH . 190 GeV, respectively, over most of the range of sin2 θt. Even

after including effects of unknown fermion dynamics at the cutoff scale, the assumption

that the Higgs potential is dominated by calculable contributions at one loop leads to a

light Higgs boson over much of the parameter space.

The remainder of this paper is organized as follows. The gauge and fermion sectors

of the theory are introduced in Sec. 2 and 3, respectively. In Sec. 4 we compute the

Coleman-Weinberg potential and analyze the parameter space in which we can obtain

both v = 246 GeV and a light Higgs boson mass. In Sec. 5 we compute the tree-level

electroweak parameters, and derive the experimental bounds on the SO(4)1 coupling (g1)

and f . Finally in Sec. 6 we offer our conclusions. Detailed calculations for the mass

matrices and the Higgs potential can be found in the appendices.

2. Gauge Sector

The gauge symmetry of our model is SU(2)3×U(1), which is embedded in an approximate

SO(5) × SO(5) global symmetry. The global symmetry is then broken spontaneously to

the diagonal SO(5) by a non-linear sigma field. This symmetry structure is represented

in Fig. 1 by a moose diagram consisting of two sites, 0 and 1, where the outer circles

are the global SO(5)’s and the inner ellipses are the gauged subgroups. In terms of the

moose site indices, the global symmetry can be written SO(5)0×SO(5)1, while the gauged

subgroup is [SU(2)0L × U(1)0R] × [SU(2)1L × SU(2)1R]. In this description the L and R

subscripts indicate the two commuting SU(2) subgroups of SO(5), while U(1)0R is a U(1)

subgroup of SU(2)0R. Note that the model can be considered a severe deconstruction of

the 5-dimensional SO(5)×U(1)X Gauge-Higgs model of Ref. [30], where the extra U(1)X
symmetry has been removed. In terms of this deconstruction, the sites 0 and 1 are the two

end-branes of the 5-dimensional interval, while the non-linear sigma field plays the role of

the fifth component of the gauge fields in the bulk.
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Figure 1: Moose diagram for the model. The approximate global symmetry is SO(5)0 × SO(5)1,

with an embedded gauge symmetry of [SU(2)0L × U(1)0R] × O(4)1 ∼= [SU(2)0L × U(1)0R] ×
[SU(2)1L × SU(2)1R × P1LR].

The non-linear sigma field is parametrized by

Σ = e
√
2iπATA/f , (2.1)

where we have chosen the normalization, tr
(

TATB
)

= δAB , so that the gauged SU(2)

sub-matrices have the conventional normalization. A convenient basis for the ten SO(5)

generator matrices is {T a
L, T

a
R, T

1, T 2, T 3, T 4}, given in Appendix A in Eq. (A.3). Under

an SO(5)0×SO(5)1 transformation, the sigma field transforms as Σ → U0ΣU
†
1 , where U0,1

are SO(5) matrices in the fundamental representation. Gauging the [SU(2)0L × U(1)0R]×
[SU(2)1L × SU(2)1R] subgroup leads to the following covariant derivative

DµΣ = ∂µΣ− ig0LW
aµ
0LT

a
LΣ− ig0RB

µ
0RT

3
RΣ+ ig1LW

aµ
1LΣT

a
L + ig1RW

aµ
1RΣT

a
R . (2.2)

With this we can write the Lagrangian density for the gauge and sigma fields as

Lgauge = −1

4
W aµν

0L W a
0Lµν −

1

4
Bµν

0RB0Rµν −
1

4
W aµν

1L W a
1Lµν −

1

4
W aµν

1R W a
1Rµν

+
f2

4
tr
[

(DµΣ) (DµΣ)
†
]

. (2.3)

In this paper we shall write g1L and g1R as if distinct. However, in models similar to ours

it has been found that promoting an SU(2)L ×SU(2)R gauge symmetry to O(4) turns out

to protect the tightly constrained ZbLb̄L coupling from large loop corrections [31, 32, 35].

For this reason, and for simplicity, we will choose g1L = g1R ≡ g1 for any computations,

imposing the L-R exchange symmetry P1LR necessary for the full O(4)1 ∼ SU(2)1L ×
SU(2)1R × P1LR. However, we will not compute the ZbLb̄L coupling, as well as other

electroweak observables at one loop, leaving this for future work [36].

With the gauged subgroups embedded in the global SO(5)0 × SO(5)1 as given by

Eq. (2.2), a vacuum alignment of 〈Σ〉 = 1 spontaneously breaks the gauge symmetry
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[SU(2)0L × SU(2)1L]× [U(1)0R × SU(2)1R] down to the SM electroweak group SU(2)L ×
U(1)R=Y . There are 6 exact Goldstone bosons, which will be eaten by 6 linear combinations

of the gauge fields, giving them masses of order the symmetry breaking scale f . The

remaining 4 dynamical fields contained in Σ have exactly the right quantum numbers to

play the role of the standard model Higgs doubletH. AlthoughH is not an exact Goldstone

boson, we note that the gauge sector of the model has the collective symmetry breaking

necessary to forbid any quadratic divergences to the Higgs effective potential at one loop.

If we set the couplings to zero at either site 0 or at site 1, the global SO(5) symmetry at

that site becomes exact, and all 10 pion fields, including the Higgs doublet, become exact

Goldstone bosons. Thus, any field-dependent term in the Higgs effective potential must

have contributions collectively from both the couplings at site 0 and at site 1, which can

only contain quadratic divergences at two loops or higher.

Working in unitary gauge, where we set the eaten Goldstone boson fields to zero, we

can identify H in Σ by letting

Π ≡
√
2πATA =









04×4

(

H

H̃

)

(

H† H̃†
)

0









, (2.4)

where

H =

(

h1
h2

)

and H̃ = −iσ2H∗ =

(

−h∗2
h∗1

)

, (2.5)

with

h1 =
1√
2
(π1 + iπ2) , (2.6)

h2 =
1√
2
(π3 + iπ4) .

Expanding and re-organizing the Σ field, we obtain

Σ = eiΠ/f = 1 +
iΠ√
2|H|

s− Π2

2|H|2 (1− c) , (2.7)

where

s = sin

(√
2|H|
f

)

and c = cos

(√
2|H|
f

)

, (2.8)

and |H| = (h21 + h22)
1/2.

Any further misalignment of the vacuum will result in a vacuum expectation value for

the Higgs doublet,

〈H〉 =
1√
2

(

v

0

)

, (2.9)

breaking the gauge symmetry completely down to U(1)EM . Determining the value of v

requires an analysis of the effective potential, which we do at one loop in this paper. For
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this we need the mass terms for the gauge bosons, as a function of the Higgs field, which

we can take to be along the direction of its vacuum expectation value, without loss of

generality. Using the expression Eq. (2.7) for Σ in the gauge Lagrangian, Eq. (2.3), we

obtain

Lmass =
f2

4

{

g20LW
aµ
0LW

a
0Lµ + g20RB

µ
0RB0Rµ + g21LW

aµ
1LW

a
1Lµ + g21RW

aµ
1RW

a
1Rµ

−2(1− a) g0Lg1LW
aµ
0LW

a
1Lµ − 2a g0Lg1RW

aµ
0LW

a
1Rµ

−2a g0Rg1LB
µ
0RW

3
1Lµ − 2(1− a) g0Rg1RB

µ
0RW

3
1Rµ

}

, (2.10)

where

a =
1

2
(1− c) = sin2

( |H|√
2f

)

. (2.11)

For a = 0 the mass matrices can be easily diagonalized. The charged gauge boson

masses are

M2
W± = 0

M2
W±

L

= 1
2

(

g20L + g21L
)

f2 (2.12)

M2
W±

R

= 1
2g

2
1Rf

2 ,

and the neutral gauge boson masses are

M2
W 3 = 0

M2
B = 0

M2
ZL

= 1
2

(

g20L + g21L
)

f2 (2.13)

M2
ZR

= 1
2

(

g20R + g21R
)

f2 .

The massless states, W a and B, correspond to the unbroken SU(2)L × U(1)Y gauge sym-

metry.

For a nonzero vacuum expectation value, 〈|H|〉 = v/
√
2, it is also straightforward to

solve for the mass eigenvalues exactly. There is one massless neutral boson, corresponding

to the photon, and the remaining neutral and charged gauge boson masses can be obtained

as the solutions to two cubic characteristic equations. In Fig. 2 we plot the light W and

Z boson masses and in Fig. 3 we plot the heavy gauge boson masses as a function of v/f

for representative choices of the parameters: g21 = 6 and f = 1 TeV. Clearly, for f = 1

TeV the only allowed value of v/f is ∼0.246, but it is nonetheless interesting to note the

symmetry of the solutions under the exchange of (v/f) ↔ (π − v/f). This is a result of

the parity symmetry, P1LR, which holds when g1L = g1R. Under this symmetry:

W aµ
1L ↔W aµ

1R

Σ → Σ′ = ΣP ,
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Figure 2: Light gauge boson masses (W and Z) as a function of v/f , for g2
1
= 6 and f = 1 TeV.

The upper curve is MZ and the lower curve is MW .

0.0 0.5 1.0 1.5 2.0 2.5 3.0

1.72
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1.76

1.78

1.80

v�f

M
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Figure 3: Heavy gauge boson masses as a function of v/f , for g2
1
= 6 and f = 1 TeV. The curves

from top to bottom are MZL
, MWL

, MZR
, and MWR

.

with

P =















0 0 0 −1 0

0 1 0 0 0

0 0 1 0 0

−1 0 0 0 0

0 0 0 0 −1















. (2.14)

The matrix P satisfies PT a
L,RP = T a

R,L. It can be shown that the transformed field Σ′

is related to the original field Σ by a shift of v/f → v/f + π, up to an overall O(4)1
transformation. This, coupled with the discrete H ↔ −H symmetry of the model, results

in the symmetry of the mass solutions.

As required by a little Higgs model, we will want v/f to be small. Thus, it is useful

to solve for the masses and mixings perturbatively in a ≈ [v/ (2f)]2. At leading nonzero
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order in v/f , the massless charged gauge bosons, W±, gain a mass

M2
W± ≈ 1

4g
2
Lv

2 , (2.15)

while the massless neutral gauge bosons, W 3 and B, mix exactly as in the standard model

to give the photon A and the Z boson with masses

M2
A = 0

M2
Z ≈ 1

4

(

g2L + g2R
)

v2 , (2.16)

where we have defined the couplings gL and gR by

1

g2L
=

1

g20L
+

1

g21L
1

g2R
=

1

g20R
+

1

g21R
. (2.17)

Note that gL and gR play the roles of the standard model SU(2)L and U(1)Y gauge cou-

plings, respectively. Of course, the photon is exactly massless, being associated with the

unbroken U(1)EM , with coupling constant e given by

1

e2
=

1

g2L
+

1

g2R
=

1

g20L
+

1

g21L
+

1

g20R
+

1

g21R
. (2.18)

More details of the gauge boson masses and mixings are given in Appendix B.

3. Fermion Sector

In this section, we will consider only one generation of quarks, although multiple generations

of quarks and leptons can be incorporated as well. We are motivated by the deconstruction

of the 5-dimensional SO(5)×U(1)X Gauge-Higgs model of Ref. [30], but the implementation

of fermions in our model benefits from the additional flexibility afforded by the general non-

linear sigma model method. In particular, we shall let all of the fermion fields transform as

non-trivial representations of the global SO(5)0 symmetry at site 0 only, and as non-trivial

representations of the corresponding gauge symmetries, SU(2)0L × U(1)0R.

For each generation of quarks in the standard model, we will have three multiplets of

SO(5)0, (ψ
A, ψB , ψC), one each for the left-handed quark doublet QL, the right-handed

up quark uR, and the right-handed down quark dR, respectively.
∗ The multiplets are Dirac

multiplets, in that each comes in a right-handed and left-handed pair,

ψ ≡
(

ψL

ψR

)

, (3.1)

except that the standard model fields within the multiplet are missing their Dirac partners.

For example, the QL field resides in the multiplet ψA
L , which transforms as the fundamental

∗Due to our unfortunate choice of notation, we will be using the subscripts L and R to label the chirality

of the fermion fields, as well as the two gauged subgroups of SO(5). When applied to a fermion field, the

subscripts always denote the chirality. Everywhere else they label the subgroup of SO(5).
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5 of SO(5), while the corresponding ψA
R multiplet is missing the QR field. In terms of

component fields we have

ψA
L =







Q

χ

u







A

L

, ψA
R =







0

χ

u







A

R

, (3.2)

where

Q =

(

Qu

Qd

)

and χ =

(

χy

χu

)

(3.3)

transform as doublets under SU(2)0L and u transforms as a singlet. Under U(1)0R the

fields transform with a charge given by Y = T 3
R + qX , where qX = +2/3 for quarks and

qX = 0 for leptons†. In this way, we find that the electromagnetic charge of each component

field is given by

q
EM

= T 3
L + T 3

R + qX = T 3
L + Y , (3.4)

a result which holds for the component fields in each SO(5) multiplet. Throughout this

paper, we will use the symbols y, u, and d to indicate the electromagnetic charges of the

fields by q
EM

(y) = +5/3, q
EM

(u) = +2/3, and q
EM

(d) = −1/3.

The right-handed up quark field uR resides in the multiplet ψB
R , which also transforms

as the fundamental 5 of SO(5), and has a corresponding Dirac partner multiplet ψB
L , which

is missing the uL field. In terms of component fields we have

ψB
L =







Q

χ

0







B

L

, ψB
R =







Q

χ

u







B

R

. (3.5)

As with the previous multiplets, the Q and χ components transform as doublets under

SU(2)0L, the u component transforms as a singlet, and all component fields transform

with charge Y = T 3
R + qX under U(1)0R.

Finally, the right-handed down quark field dR resides in the multiplet ψC
R , which trans-

forms as the adjoint 10 of SO(5), and has a corresponding Dirac partner multiplet ψC
L ,

which is missing the dL field. In terms of component fields we have

ψC
L =

1√
2















−u− φy 0 0 Qu

φd −u+ 0 0 Qd

−y 0 u+ φy χy

0 −y φd u− χu

χu −χy −Qd Qu 0















C

L

,

†In the extra-dimensional gauge-Higgs model the charge qX arises from the extra U(1)X bulk gauge

symmetry. In our model, we are free to give the fermion fields any charge Y under the U(1)0R, and so qX

corresponds to the difference between Y and the canonical charge T 3
R.
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ψC
R =

1√
2















−u− φy −d 0 Qu

φd −u+ 0 −d Qd

−y 0 u+ φy χy

0 −y φd u− χu

χu −χy −Qd Qu 0















C

R

, (3.6)

where

u± =
1√
2
(u± φu) . (3.7)

Under SU(2)0L, the fields φ transform as triplets, the fields Q and χ transform as doublets,

and the fields y, u, and d transform as singlets. Under U(1)0R the fields transform with

a charge given by Y = T 3
R + qX (with T 3

R in the adjoint representation for ψC), so that

Eq. (3.4) holds for all fields.

The Lagrangian density for the fermion fields with Dirac masses can be written

LDirac = iψ̄AD/ψA − λAfψ̄
AψA + iψ̄BD/ψB − λBfψ̄

BψB

+ i tr
(

ψ̄CD/ψC
)

− λCftr
(

ψ̄CψC
)

, (3.8)

where the covariant derivatives are

Dµψ(A,B) =
[

∂µ − ig0LW
aµ
0LT

a
L − ig0RB

µ
0R

(

T 3
R + qX

)]

ψ(A,B)

DµψC = ∂µψC − ig0LW
aµ
0L

[

T a
L, ψ

C
]

− ig0RB
µ
0R

([

T 3
R, ψ

C
]

+ qXψ
C
)

. (3.9)

With this Lagrangian all ψA fields have a Dirac mass MA = λAf , all ψ
B fields have a

Dirac mass MB = λBf , and all ψC fields have a Dirac mass MC = λCf , except for the

fields with missing partners, which are massless. For each generation of quarks there will

be five heavy charge +5/3 fermions: one with mass MA, one with mass MB and three with

mass MC . There will be three heavy charge -1/3 fermions: one with mass MB and two

with mass MC . There will be eight heavy charge +2/3 fermions: two with mass MA, two

with mass MB and four with mass MC . The fields Q
A
L , u

B
R, and d

C
R remain massless at this

point.

Let us consider how to give the light fermions a mass, by noting the symmetries of

the Dirac mass terms in Eq. (3.8). They are written to appear symmetric under the

SO(5)0 transformation ψ(A,B) → U0ψ
(A,B) and ψC → U0ψ

CU †
0 ; however, this symmetry is

explicitly broken by the missing partners in the SO(5) multiplets. On the other hand, the

SO(5)1 symmetry is preserved by default. In addition, there is a global U(1) symmetry

associated with each of the ψA, ψB , and ψC fields, which must be broken to give the light

fermions a mass.

We can create objects that transform under the SO(5)1 symmetry, by multiplying the

complete fermion multiplets by the Σ field: ψA′
L = Σ†ψA

L , ψ
B′
R = Σ†ψB

R , and ψ
C′
R = Σ†ψC

RΣ.

Since the SO(5)1 symmetry is broken explicitly by the gauge interactions to O(4)1, we can

include this breaking by projecting onto O(4) invariant subspaces, using the O(4)-invariant
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vector,

E =















0

0

0

0

1















(3.10)

It is useful to think of this vector as a spurion field which transforms as E → U1E under

the SO(5)1 transformation. In this way, we can write three Yukawa terms for the fermions

that have the SO(5)1 symmetry broken purely by the vector E. They are

LYukawa = −
[

λ1f
(

ψ̄A
LΣ
)

EE†
(

Σ†ψB
R

)

+
√
2λ2f

(

ψ̄A
LΣ
)

(

1− EE†
)(

Σ†ψC
RΣ
)

E

+λ3f
(

ψ̄A
LΣ
)

(

1− EE†
)(

Σ†ψB
R

)

+ h.c.
]

= −
[

λ1f
(

ψ̄A
LΣ
)

EE†
(

Σ†ψB
R

)

+
√
2λ2f

(

ψ̄A
Lψ

C
RΣ
)

E (3.11)

+λ3f
(

ψ̄A
LΣ
)

(

1− EE†
)(

Σ†ψB
R

)

+ h.c.
]

,

where we have used the SO(5) transformation properties of the adjoint representation to

simplify the second term. Note that these three terms correspond directly to the three

“brane” mass terms in the 5-dimensional SO(5) × U(1)X Gauge-Higgs model of Ref. [30].

In addition we note that the Yukawa terms of Eq. (3.12) preserve the SO(5)0 symmetry,

while the Dirac mass terms of Eq. (3.8) preserve the SO(5)1 symmetry, so that the fermion

interactions also exhibit the collective symmetry breaking that is necessary to cancel the

one-loop quadratic divergences to the Higgs potential.

According to Refs. [32, 37], the term with λ3 results in a large negative correction to

the T parameter in extra-dimensional models. Furthermore, we can forbid this term if we

assume that the terms that simultaneously break the SO(5)1 and the global U(1)’s in the

fermion sector must be proportional to E. Thus, we will follow the lead of Ref. [30] and

set λ3 = 0. Expanding in terms of component fields, we obtain

LYukawa = −
[

iscλ1f√
2|H|

(

Q̄A
LH
)

uBR − isλ2f√
2|H|

(

Q̄A
LH̃
)

dCR + . . .+ h.c.

]

, (3.12)

which contains the same Yukawa terms for the light fermions as in the standard model. If

we assume that λ(1,2) ≪ λ(A,B,C), then this results in masses for the up and down quarks

of

Mu ≈ λ1v/
√
2

Md ≈ λ2v/
√
2 , (3.13)

while the heavy fermions get only small shifts from their masses of MA, MB , MC . In

general, λ1 and λ2 will be matrices in generation space, leading to weak mixing and the

CKM matrix.
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Figure 4: Charged +2/3 fermion masses, in the top quark sector, as a function of v/f , for f = 1

TeV, λA = λ1 =
√
2λt and λB = 0.981λt. The curves from top to bottom areMTA

, MTB
, and Mt.

The only quark for which the approximation λ1 ≪ λ(A,B,C) may not hold is the top

quark. If we take λ1 for the top quark sector of the same order as λ(A,B,C) we find that the

charge +2/3 fermions of ψC and one linear combination of each of the charge +2/3 fermions

of ψA and ψB have mass eigenvalues unaffected by the Yukawa term. The remaining three

linear combinations mix due to the Yukawa term and have masses, to leading nonzero order

in v/f , of

Mt ≈ λtv/
√
2

MTA
≈
√

λ2A + λ21f (3.14)

MTB
≈ λBf ,

where we have defined
1

λ2t
=

1

λ21
+

1

λ2A
. (3.15)

We see that even for λ1 not small, the top quark mass is down by a factor of v/f compared

to the heavy quarks. It is possible to obtain these three mass eigenvalues exactly as the

solution of a cubic characteristic equation. The three masses are plotted as a function of

v/f in Fig. 4. More details of the fermion masses and mixings in the top quark sector are

given in Appendix C.

4. Effective Potential

In our model, the vacuum expectation value of the Higgs doublet is driven entirely by

the radiatively-produced effective potential. The potential depends on 7 independent pa-

rameters: {f, g1, g0L, g0R, λA, λB , λ1}. Here, we have chosen to equate the gauge couplings

at site 1: g1 = g1L = g1R. The fermion parameters λA, λB, and λ1 are those for the

third-generation quark sector. We note that the additional fermion parameters λ2 and λC
can be neglected in the limit of zero bottom quark mass; λ2 is directly proportional to the
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bottom quark mass, while the heavy states in the ψC multiplet do not mix in this limit.

Finally, we must include a cutoff Λ for our theory. Using naive dimensional analysis, we

choose this to be proportional to the symmetry-breaking scale f by Λ = 4πf .

The seven parameters listed above are not entirely unconstrained, since we must recover

the standard model at low energies. In particular we must recover the electroweak gauge

couplings g ≡ gL and g′ ≡ gR, the top Yukawa coupling λt ≡
√
2Mt/v, and the Higgs

vacuum expectation value v. This results in four constraints on the above parameters.

Three of these relations have been given previously in Eqs. (2.17) and Eq. (3.15). Using

Eqs. (2.17), it is possible to treat g1 as independent, while fixing g0L and g0R by the

relations

1

g20L
=

1

g2L
− 1

g21
1

g20R
=

1

g2R
− 1

g21
. (4.1)

Note that these equations imply that g1 > gL,R. We impose Eq. (3.15) by defining a mixing

angle in the top sector,

sin θt =
λ1

√

λ21 + λ2A

, (4.2)

so that the top mass parameters are given in terms of θt by λA = λt/ sin θt and λ1 =

λt/ cos θt. The fourth constraint is that the minimum of the effective potential for the

Higgs doublet is at 〈|H|〉 = v/
√
2. In the following, we find it convenient to choose the set

{f, g1, sin θt} as our free parameters, while varying λB to minimize the effective potential

at the correct value of v.

The gauge and fermion contributions to the Higgs potential are generated at the one-

loop level and can be expressed by the formulae of Coleman and Weinberg [38]. Because

of the collective symmetry breaking, there are no quadratic divergences at this order;

however, there are logarithmic divergences, which must be cutoff at the scale Λ = 4πf .

The Coleman-Weinberg potential for our model can be written

V = Vgauge + Vfermion , (4.3)

where

Vgauge =
3

64π2

{

2 Tr

[

M4
CC(Σ)ln

(M2
CC(Σ)

Λ2

)]

+Tr

[

M4
NC(Σ)ln

(M2
NC(Σ)

Λ2

)]}

,

Vfermion = − 3

16π2
Tr

[

(

M†Mtop(Σ)
)2

ln

(M†Mtop(Σ)

Λ2

)]

, (4.4)

where M2
CC , M2

NC , and Mtop are given in the appendices in Eq. (B.3), Eq. (B.9), and

Eq. (C.5), respectively. In general, the logarithm of the cutoff, lnΛ2, may be accompanied

by a scheme-dependent additive constant, which can only be determined within the high-

energy completed theory. In this paper, we will set these to zero.

We are now ready to explore the parameter space of the Coleman-Weinberg potential.

Using the masses MW , MZ , Mt and the Fermi constant GF as inputs, we impose the
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Figure 5: Coleman-Weinberg Potential as a function of v/f , for g2
1
= 6, f = 1 TeV, λA = λ1 =√

2λt and λB = 0.981λt. This choice of parameters gives v = 246 GeV and MH = 130 GeV.
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Figure 6: Same as Figure 5, but plotted with v/f ranging from 0 to .4 to show the minimum in

detail.

constraints with g2L = .426, g2R = .122, λ2t = .990, and require a minimum of the potential

at v = 246 GeV. We consider the following range of parameters:

.5 ≤ g21 ≤ 4π

.1 ≤ sin2 θt ≤ .9 (4.5)

1 TeV ≤ f ≤ 10 TeV ,

which assumes that none of the dimensionless parameters in the set {g1, g0L, g0R, λA, λ1}
are too large. Within this range of parameters, we find that it is always possible to obtain

two values of λB for each choice of {f, g1, sin θt} that give the correct vev. In Figs. 5 and 6

we plot the potential for a typical set of parameters {f = 1 TeV, g21 = 6, sin2 θt = 1/2}
with λB = 0.981λt, that gives v = 246 GeV and MH = 130 GeV.

Before discussing the two different branches of solutions for λB further, it is useful to

consider the Coleman-Weinberg potential, expanded for small values of the Higgs field H.
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Figure 7: The “small-MH” branch of solutions for λB/(λA/
√
2) as a function of sin2 θt for f = 1

TeV and for three different values of g1. From top to bottom the three curves correspond to g2
1
= 0.5,

g2
1
= 2π, and g2

1
= 4π, respectively.

We have

V = m2H†H + λ(H†H)2 + · · · . (4.6)

The full expressions for m2 and λ are given in Appendix D; however, we find that the

qualitative features of the two solutions can be understood from the dominant fermion-

loop contributions to m2 = m2
gauge +m2

fermion. We obtain

m2
fermion =

3

8π2

{

(

2M2
TB
λ21 −M2

TA
λ2t
)

(

ln
Λ2

M2
TA

− 1

2

)

+
2M4

TB
λ21

M2
TA

−M2
TB

ln
M2

TB

M2
TA

}

, (4.7)

with M2
TA

= (λ2A + λ21)f
2 and M2

TB
= λ2Bf

2.

Note thatm2
fermion can be either positive or negative, due to the collaboration of the two

heavy fermions. In fact, in order to find a Higgs vacuum expectation value with v ≪ f , it is

necessary that the contributions tom2
fermion cancel to some degree. As suggested above, this

can happen in two different ways. Firstly, one could cancel the coefficient of the divergent

logarithm lnΛ2, which is proportional to (2M2
TB
λ21 − M2

TA
λ2t ) = λ21f

2(2λ2B − λ2A). This

cancels exactly for λB = λA/
√
2, giving a completely finite fermion contribution to the full

Coleman-Weinberg potential at one loop. The choice λB ≈ λA/
√
2 also gives a reasonable

approximation to the first (“small-MH”) branch of solutions for λB . This can be seen in

Fig. 7, where we plot λB/(λA/
√
2) for this branch as a function of sin2 θt for f = 1 TeV

and for three different values of g21 . Over most of the range of sin2 θt, we find λB ≈ λA/
√
2

within 10%. As we shall see later in this section, the simple relation between λA and λB
is in general modified by ultraviolet effects, but it is still possible to find a choice of λB
that gives v = 246 GeV and a light Higgs boson for most of the parameter space. The

predictions for the Higgs boson mass that correspond to the solutions given here are shown

in Fig. 8 for f = 1 TeV and f = 10 TeV for the same three values of g21 . For the range of

parameters given in Eq. (4.5) we find 120 GeV. MH . 320 GeV, with the lighter values of
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Figure 8: The “small-MH” branch predictions for the Higgs boson mass as a function of sin2 θt.

The upper three curves are for f = 10 TeV, while the lower three curves are for f = 1 TeV. Within

each set of three, the curves correspond from top to bottom to g2
1
= 0.5, g2

1
= 2π, and g2

1
= 4π,

respectively.

MH corresponding to smaller values of λA and larger values of λ1. In particular, for f = 1

TeV, we obtain MH . 150 GeV over a large range of sin2 θt. Interestingly, the predictions

for MH show very little dependence on the gauge coupling g1, with MH varying by only a

few GeV for 0.5 ≤ g21 ≤ 4π. Furthermore, the predictions show only modest dependence

on f , with MH increasing by about 40 GeV as f is increased from 1 TeV to 10 TeV.

The second (“large-MH”) branch of solutions for λB can also be identified with a

cancellation in m2
fermion. In this case the cancellation occurs for large MTB

, with the result

M2
TB

≈ Λ2e−1/2. The exact solutions have 7 . λB/λt . 9, with corresponding values of

the Higgs boson mass of 380 GeV. MH . 910 GeV. As with the other branch of solutions,

we find that the values of λB and MH depend mostly on sin2 θt, with little dependence on

g1 and f . On the other hand, this branch of solutions is probably not satisfactory, since it

requires the mass MTB
of one of the heavy fermions to be of the same size as the cutoff Λ.

In addition, this solution will be strongly affected by the inclusion of a scheme-dependent

constant, ln Λ2 → ln Λ2 + δF , which again shows that the theory with this choice of λB
will be strongly influenced by unknown dynamics at the cutoff. Finally, the larger values

of MH obtained for this branch of solutions also makes it less viable phenomenologically,

as we will see in the next section. For these reasons, we focus on the “small-MH” branch

of solutions in the remainder of this paper.

One may wonder whether the “small-MH” branch of solutions is also strongly affected

by ultraviolet physics at the cutoff scale. For instance, if there is a different cutoff associated

with the ψA fermions and the ψB fermions, one might expect that the factor

(

2M2
TB
λ21 −M2

TA
λ2t
)

ln
Λ2

M2
TA

= λ21f
2(2λ2B − λ2A) ln

Λ2

M2
TA

,
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Figure 9: Sensitivity of the “small-MH” branch predictions for the Higgs boson mass to non-

identical fermion cutoffs. All four curves are for f = 1 TeV, g2
1
= 2π. The curves are labeled

by (ΛA/Λ,ΛB/Λ), where Λ = 4πf . The dashed curves are the corresponding“large-MH” branch

predictions for the Higgs boson mass, which lie in the mass-range of this plot for ΛB/Λ = 1/2.

which is strongly canceled in this branch of solutions, would be replaced by

λ21f
2

(

2λ2B ln
Λ2
B

M2
TA

− λ2A ln
Λ2
A

M2
TA

)

.

In Appendix E we present a modification of the fermion sector that leaves the fermion

contribution to the one-loop Coleman-Weinberg potential for the Higgs boson finite, and

has exactly the effect just described above. In this case there is an additional term in the

potential,

∆Vfermion = − 3

16π2
f4λ21s

2

{

2λ2B ln
Λ2

Λ2
B

− λ2A ln
Λ2

Λ2
A

}

, (4.8)

which exactly cancels the dependence on the UV cutoff Λ in Vfermion of Eq. (4.4), exchanging

it for the dependence on the two large mass parameters, ΛA and ΛB .

For ΛA 6= ΛB , the “small-MH” solutions now occur for

λ2B ≈ λ2A
2

(

ln(Λ2
A/M

2
TA

)

ln(Λ2
B/M

2
TA

)

)

. (4.9)

This implies that MTB
= λBf is no longer completely determined byMTA

(or equivalently,

by λA or sin θt), since the relationship is modified by the ratio of logarithms of the unknown

cutoffs, ΛA and ΛB . However, the Higgs boson mass is still strongly correlated with the two

heavy fermion masses MTA
and MTB

. In Fig. 9 we investigate the sensitivity of the Higgs

boson mass to UV effects by plotting MH as a function of sin2 θt, while varying ΛA and ΛB

together and independently between Λ/2 and 2Λ, where Λ = 4πf . We use f = 1 TeV and

g2 = 2π as representative values in this plot. As expected, and in contrast to the “large-

MH” branch of solutions, the prediction for the Higgs mass is very insensitive to varying the
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scales together from (ΛA/Λ,ΛB/Λ) = (1/2, 1/2) to (2, 2), at least for 0.3 . sin2 θt . 0.9.

On the other hand, for (ΛA/Λ,ΛB/Λ) = (1/2, 2) the predictions for MH decrease by about

25-40 GeV, while for (ΛA/Λ,ΛB/Λ) = (2, 1/2) the predictions for MH increase by about

80 GeV. For this latter choice of cutoffs, it can be seen from the figure that a solution for

v = 246 GeV is only obtained for 0.6 . sin2 θt . 0.8. This is related to the fact that the

“large-MH” solutions decrease in energy for smaller ΛB , as displayed by the dashed curves

in Fig. 9. The sensitivity of the Higgs boson mass to non-identical fermion cutoffs can be

understood largely in terms of the residual dependence of the Higgs quartic coupling λ on

the heavy fermion mass ratio MTB
/MTA

(see Eq. (D.5) in Appendix D), which in turn is

affected by Eq. (4.9). Thus, fixing the two heavy fermion masses largely determines the

Higgs boson mass, with larger values of MH correlated with larger values of MTB
/MTA

for

a given sin2 θt. In addition, we note that over much of the parameter space the predicted

Higgs boson mass is still below 200 GeV for a significant portion of the range of sin2 θt.

To conclude this section, we comment on the size of the fine-tuning‡ that is needed

in this model to obtain a Higgs vacuum expectation value with v2 ≪ f2. We have in-

vestigated this issue by analyzing the fine-tuning of v2 with respect to the parameters

pi ∈ {g1L, g1R, g0L, g0R, λA, λB , λ1,ΛA,ΛB}, where the fine-tuning with respect to pi is de-

fined by ∆pi = (pi/v
2)(∂v2/∂pi), following Barbieri and Giudice [34]. We then let the

total fine-tuning be the combination of each of the separate fine-tunings in quadrature,

∆ = (
∑

i ∆
2
pi)

1/2, subject to the constraints, (3.15) and (4.1). Details of the formalism

that we have followed can be found in Ref. [28]. For f = 1 TeV, g21L = g21R = 2π, and

ΛA = ΛB = Λ = 4πf , we find values of ∆ of ∼ 100 − 140 for Higgs masses between 120

and 160 GeV, with the dominant contributions coming from ∆λB
and ∆λA

(including the

associated constraint). These values are comparable to the minimium values obtained for

the Simplest [19] and Littlest [5] Little Higgs models, which are displayed in Fig. 13 of

Ref. [28]. The fact that the fine-tuning is of similar size in our model is not surprising,

since all of the Little Higgs models considered in Ref. [28], as well as our model, contain

the exact same large negative contribution to m2 from a heavy partner of the top quark:

δm2 = −3λ2t
8π2

M2
T ln

Λ2

M2
T

. (4.10)

The different models have different mechanisms for (partially) canceling this term to obtain

a light Higgs boson, but since the size of this term is comparable in all of the Little Higgs

models considered, one would expect the amount of fine-tuning to also be comparable. We

do note, however, that the amount of fine-tuning can be reduced in our model if we allow ΛA

and ΛB to become as low as Λ/3, which reduces the logarithmic enhancement of the above

term. In this case we can obtain values of ∆ of ∼ 40−50 for Higgs masses between 120 and

160 GeV, with the dominant contributions now coming from ∆ΛA
and ∆ΛB

. These amounts

of fine-tuning are typically below the values for the Minimal Supersymmetric Standard

Model in the same range of Higgs masses as shown in Fig. 13 of Ref. [28]. Given the

‡We have not considered here the “hidden” fine-tuning necessary to maintain the global symmetry of

the fermion couplings against non-symmetric running, as discussed in Ref. [33]. Our model, like other Little

Higgs models, is not obviously immune to this effect.
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ambiguities in precisely quantifying the amount of fine-tuning, we prefer to be conservative

in our conclusions from this investigation, taking away from it simply that the amount

of fine-tuning in our model is comparable and typically no worse than other Little Higgs

models.

5. Electroweak Constraints

The first place to consider for testing the experimental viability of any beyond-the-standard-

model theory is in constraints from electroweak precision measurements. In our model, the

electroweak observables receive tree-level corrections from the new gauge fields. In fact,

although the standard model light fermions couple to all of the massive gauge fields, which

are mixtures of the gauge fields at site 0 and site 1, they are only charged under the

SU(2)0L ×U(1)0R gauge symmetry. As a result, the corrections to low-energy observables

occur only through electroweak gauge current correlators, and are thus “universal” in the

sense of Barbieri et al. [39]. The correlators can be easily computed from the quadratic

Lagrangian by inverting the subset of the propagator matrix involving the site-0 fields only.

This leads to the following expressions for the electroweak parameters [39], to leading order

in v2/f2:

Ŝ =
v2

4f2
(

sin2 φL + cot2 θ sin2 φR
)

(5.1)

T̂ = 0 (5.2)

Y =
v2

2f2
cot2 θ sin4 φR (5.3)

W =
v2

2f2
sin4 φL . (5.4)

Here sinφL = gL/g1L and sinφR = gR/g1R are defined in Eq. (B.4) and Eq. (B.11),

respectively, and θ is the weak mixing angle defined in Eq. (B.13). We can express the

couplings gL ≡ g and gR ≡ g′ in terms of α(M2
Z), MZ , and GF , and in addition we have

v2 = 1/(
√
2GF ) and

sin 2θ =

[

4πα(M2
Z)√

2GFM
2
Z

]1/2

. (5.5)

Notice that the corrections to the electroweak observables are not oblique, since nonzero

values for Y andW signal the presence of direct corrections, corresponding to four-fermion

operator exchanges at zero momentum [39, 40]. Notice also that the custodial symmetry

of the model ensures that T̂ = 0 at tree-level.

The observables of Eqs.(5.1)-(5.4) depend on three unknown parameters: f , g1L and

g1R. In an O(4)1 theory the two couplings are identical, g1L = g1R ≡ g1, and thus

we can nicely constrain the model in a two-parameter space (f, g1). The global fit in

Ref. [39] to the experimental data implies that a heavy Higgs boson is only compatible with

positive T̂ ; therefore, we only consider the “small-MH” branch of solutions. The combined
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Figure 10: Bounds on g1 and f from combined experimental constraints on Ŝ, Y , and W , at the

95% confidence level.

experimental constraints on Ŝ, Y , andW , taken from Ref. [39] with the light Higgs fit, give

the bounds of Fig. 10, where the colored area is excluded at the 95% confidence level. The

representative values used in the plots in the previous sections, f = 1 TeV and g21 = 6, are

within the allowed region. The bounds in Fig. 10 are not expected to be strongly affected

by loop corrections; however, there may be constraints on the heavy top quark sector

coming from one loop contributions to the T̂ parameter. An analysis of these contributions

is currently underway [36].

Finally, we must comment on the fact that the couplings of the standard model fermions

to the gauge boson eigenstates, given in Eqs. (3.8) and (3.9), are not unique, in the sense

that one can always add operators that correspond to renormalizations of the broken cur-

rents:

∆LDirac = iκAψ̄
A
L

(

ΣD/Σ†
)

ψA
L + iκBψ̄

B
R

(

ΣD/Σ†
)

ψB
R

+ iκC1
tr
[

ψ̄C
R

(

ΣD/Σ†
)

ψC
R

]

+ iκC2
tr
[

ψ̄C
Rγ

µψC
R (DµΣ)Σ

†
]

. (5.6)

In the main discussion we have assumed that all of the fermions act as fundamental point

particles, charged only under the SU(2)0L × U(1)0R gauge symmetry. In that case, the

κi coefficients would arise only perturbatively through loop diagrams, and we can assume

them to be small. On the other hand, it is possible to imagine a more general scenario

where these coefficients are of order one. In fact, in the deconstruction of the gauge-Higgs

model of Ref. [30] the fundamental fields that naturally appear are actually ψA′
L = Σ†ψA

L ,

ψB′
R = Σ†ψB

R , and ψ
C′
R = Σ†ψC

RΣ, which are charged under the SU(2)1L × SU(1)1R gauge
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symmetry. This corresponds to the case where κA = κB = κC1
= κC2

= 1. In this case

the electroweak corrections are not “universal”, and in addition, there will be a nonzero

contribution to T̂ . For these reasons, we have chosen the simpler fermion implementation

of Sec. 3, and we assume that the κi are negligible.

6. Conclusions

In this article, we have presented a new Little Higgs model, motivated by the deconstruction

of a five-dimensional gauge-Higgs model [30]. It is based on the approximate global sym-

metry breaking pattern SO(5)0 ×SO(5)1
f→ SO(5), with gauged subgroups spontaneously

breaking under the pattern [SU(2)0L × U(1)0R] × O(4)1
f→ SU(2)L × U(1)Y

v→ U(1)EM ,

where we have made the simplifying assumption of g1L = g1R. The novel features of this

model are these: the only physical scalar in the effective theory is the Higgs boson; the

model contains a custodial symmetry, which ensures that T̂ = 0 at tree-level; and the

potential for the Higgs boson is generated entirely through one-loop radiative corrections.

Due to the collective symmetry breaking in the model these corrections have no quadratic

divergences, depending only logarithmically on the cutoff of the effective theory.

The fact that the electroweak symmetry breaking is fully radiatively-generated is a

unique and intriguing feature of this model. In particular, it implies that the model is more

constrained, and arguably more predictive, than other Little Higgs models. For instance,

if we use a single cutoff Λ for the fermion logarithmic divergences, then once the scale f is

chosen and the correct value of the Higgs boson vev, v, is imposed, we find that the Higgs

boson mass, as well as the masses of the heavy partners of the top quark, depend almost

exclusively on a single fermion mixing parameter, sin2 θt. For the “small-MH” branch, we

find for f = 1 TeV that the Higgs boson mass satisfies 120 GeV . MH . 150 GeV over

most of the range of sin2 θt. For f raised to 10 TeV, these values increase by about 40

GeV. If we take into account possible UV effects in the fermion sector by introducing two

distinct fermion cutoffs ΛA and ΛB , we still find that the Higgs boson mass is correlated

with the masses of the heavy top quark partners, and it lies below 200 GeV for much of

the parameter space.

The radiative symmetry breaking is achieved in this model with an amount of fine-

tuning that is of similar size as in other Little Higgs models. The relation v ≪ f is obtained

by a cancellation between the contributions of two different heavy top quark partners to

the Higgs boson mass-squared. Once this cancellation is achieved, the Higgs boson is

automatically light in the “small-MH” branch of solutions, with the phenomenologically-

viable range of masses given above. This contrasts with other little Higgs models, where

an additional operator is included to give a large Higgs quartic coupling and v ≪ f , but

a similar cancellation of contributions to m2 is still necessary to keep the Higgs boson

light [28].

We have analyzed the tree-level constraints on the model from electroweak precision ex-

periments and found that the model is viable for a reasonably large and phenomenologically-

interesting range of f and g1 ≡ g1L = g1R. The model introduces a number of new states,

which may be probed at the LHC. In addition to the Higgs boson, there are two heavy
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neutral vector bosons and two heavy charged vector bosons, whose masses and couplings

depend directly on f and g1. In the third-generation fermion sector, there are eight new

heavy up-like quarks, three new heavy down-like quarks, and five new heavy charge 5/3

quarks. The masses and mixings of some portion of these heavy top quarks will satisfy

relations required by the radiative symmetry breaking and which depend on the Higgs

boson mass. If the other generations of quarks follow the same multiplet structure, which

is probably necessary to avoid flavor-changing neutral currents, this heavy fermion zoo will

be multiplied by the number of generations. In addition, similar heavy partners for the

leptons should exist. Since the decay rates of these heavy fermions to the SM fermions are

proportional to mixing angles, which in turn are proportional to the light fermion masses,

it is possible that some of these heavy particles may have long lifetimes, with interesting

decay signatures. We expect there to be a rich phenomenology at the LHC, which demands

a more detailed study [36].
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A. SO(5) Generator Matrices

Here we give a basis for the ten SO(5) generator matrices that is particularly useful for

our purposes. The 5× 5 generator matrices in the standard basis are

(

T ab
)

ij
=

−i√
2
(δai δ

b
j − δaj δ

b
i ) , (A.1)

where a, b = 1 . . . 5 (with a < b) are the generator labels, i, j = 1 . . . 5 are the row and

column indices, and we have chosen the normalization, tr
(

T abT cd
)

= δacδbd, so that the

gauged SU(2) sub-matrices have the conventional normalization.

It is possible to perform a similarity transformation on these matrices, T ′ = S†TS, such

that two of them are simultaneously diagonal. For example, it is possible to diagonalize

T ′12 and T ′34 by the matrix

S =
1√
2















1 0 0 −1 0

i 0 0 i 0

0 1 1 0 0

0 i −i 0 0

0 0 0 0
√
2















. (A.2)

Applying this similarity transformation to all of the matrices and choosing convenient linear

combinations of them, we obtain the following set of basis matrices: {T a
L, T

a
R, T

1, T 2, T 3, T 4},
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where

T a
L =















(

I ⊗
(

1
2σ

a
)

)

0

0

0

0

0 0 0 0 0















, T a
R =















(

−
(

1
2σ

a
)T ⊗ I

)

0

0

0

0

0 0 0 0 0















,

T 1 =
1

2















0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

1 0 0 1 0















, T 2 =
1

2















0 0 0 0 i

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −i
−i 0 0 i 0















, (A.3)

T 3 =
1

2















0 0 0 0 0

0 0 0 0 1

0 0 0 0 −1

0 0 0 0 0

0 1 −1 0 0















, T 4 =
1

2















0 0 0 0 0

0 0 0 0 i

0 0 0 0 i

0 0 0 0 0

0 −i −i 0 0















.

In the above expressions, I is the 2× 2 identity matrix and σa are the 2× 2 Pauli matrices

for a = 1, 2, 3.

B. Gauge Boson Masses and Mixing

From Eq. (2.10), we can obtain the mass terms for the neutral and charged gauge bosons

of the following form:

Lmass = Wµ†M2
CCWµ +

1

2
Zµ†M2

NCZµ , (B.1)

where the vectors Wµ and Zµ are given by:

Wµ =







W+µ
0L

W+µ
1L

W+µ
1R






, Zµ =











W 3µ
0L

W 3µ
1L

W 3µ
1R

Bµ
0R











, (B.2)

with W±µ = (W 1µ ∓ iW 2µ)/
√
2 for each of the SU(2) groups.

B.1 The Charged Sector

We first consider the charged gauge boson sector. The mass matrix in this sector takes the

form:

M2
CC =

f2

2







g20L −(1− a)g0Lg1L −ag0Lg1R
−(1− a)g0Lg1L g21L 0

−ag0Lg1R 0 g21R






. (B.3)
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For a = 0 this mass matrix can be diagonalized in terms of the mixing angle φL, given by

sinφL =
g0L

√

g20L + g21L

,

cosφL =
g1L

√

g20L + g21L

. (B.4)

Recalling the coupling gL, defined in Eq. (2.17), this implies

gL = g0L cosφL = g1L sinφL . (B.5)

For nonzero vacuum expectation value we can solve perturbatively in the small pa-

rameter,

a = sin2
( |H|√

2f

)

=
|H|2
2f2

− |H|4
12f4

+ · · · , (B.6)

There will be one light eigenstate, W±µ, which we will identify as the standard modelW±,

and two heavy eigenstates, W±µ
L and W±µ

R . To O(a2), the masses are

M2
W ≈ f2

2

[

2ag2L − a2g2L
(

cos2 2φL + 1
)]

M2
WL

≈ f2

2

[

(g20L + g21L)− 2ag2L + a2
(

g2L cos2 2φL +
g20Lg

2
1R sin2 φL

g20L + g21L − g21R

)]

M2
WR

≈ f2

2

[

g21R + a2
(

g2L − g20Lg
2
1R sin2 φL

g20L + g21L − g21R

)]

. (B.7)

Expanding the gauge eigenstates in terms of the mass eigenstates, to O(a), we obtain

W±µ
0L ≈ W±µ

(

cosφL +
a

4
sin 4φL sinφL

)

+W±µ
L

(

− sinφL +
a

4
sin 4φL cosφL

)

+W±µ
R

(

−a gL
g1R

cosφL + a
g0Lg1R sin2 φL
g20L + g21L − g21R

)

W±µ
1L ≈ W±µ

(

sinφL − a

4
sin 4φL cosφL

)

+W±µ
L

(

cosφL +
a

4
sin 4φL sinφL

)

+W±µ
R

(

−a gL
g1R

sinφL − a
g0Lg1R sinφL cosφL
g20L + g21L − g21R

)

(B.8)

W±µ
1R ≈ W±µ

(

a
gL
g1R

)

+W±µ
L

(

a
g0Lg1R sinφL
g20L + g21L − g21R

)

+W±µ
R .

B.2 The Neutral Sector

The mass matrix for the neutral gauge fields takes the form:

M2
NC =

f2

2











g20L −(1− a)g0Lg1L −ag0Lg1R 0

−(1− a)g0Lg1L g21L 0 −ag1Lg0R
−ag0Lg1R 0 g21R −(1− a)g1Rg0R

0 −ag1Lg0R −(1− a)g1Rg0R g20R











.

(B.9)
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For a = 0 the mass matrix is block diagonal, so that the SU(2)0L × SU(2)1L and the

SU(2)0R ×SU(2)1R sub-matrices can be diagonalized separately in terms of the angles φL,

defined in Eq. (B.4), and φR, defined similarly by

sinφR =
g0R

√

g20R + g21R

, (B.10)

cosφR =
g1R

√

g20R + g21R

. (B.11)

The angle φR is related to the coupling gR, from Eq. (2.17), by

gR = g0R cosφR = g1R sinφR . (B.12)

After diagonalizing the two sub-matrices, there are two massless neutral states, which

correspond to the standard model W 3µ and Bµ. One linear combination of these is the

photon, which is massless for arbitrary values of the parameter a. It can be separated out

in terms of a third angle θ (essentially the weak mixing angle), which is defined by

sin θ =
gR

√

g2L + g2R

,

cos θ =
gL

√

g2L + g2R

. (B.13)

The coupling to the photon is

1

e2
=

1

g2L
+

1

g2R
=

1

g20L
+

1

g21L
+

1

g20R
+

1

g21R
, (B.14)

so that e = gL sin θ = gR cos θ.

For nonzero vacuum expectation value, there will be four neutral states: the photon

Aµ, which is exactly massless, the light eigenstate Zµ, and two heavy eigenstates, ZL and

ZR. We can solve perturbatively in the parameter a for the masses and mixings of these

states. To O(a2), the masses are

M2
A = 0 (exact)

M2
Z ≈ f2

2

[

2a(g2L + g2R)− a2(g2L + g2R)
(

cos2 2φL + cos2 2φR
)]

M2
ZL

≈ f2

2

[

(g20L + g21L)− 2ag2L + a2
(

(g2L + g2R) cos
2 2φL +

G2
LR

∆g2

)]

M2
ZR

≈ f2

2

[

(g20R + g21R)− 2ag2R + a2
(

(g2L + g2R) cos
2 2φR − G2

LR

∆g2

)]

, (B.15)

where we have defined for compactness:

GLR = g0Lg1R sinφL cosφR + g1Lg0R cosφL sinφR

∆g2 = g20L + g21L − g20R − g21R . (B.16)
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Expanding the gauge eigenstates in terms of the mass eigenstates, we obtain

W 3µ
0L ≈ Aµ (sin θ cosφL) + Zµ

(

cos θ cosφL + a
sin 4φL sinφL

4 cos θ

)

+Zµ
L

(

− sinφL +
a

4
sin 4φL cosφL

)

+ Zµ
R

(

−asin 4φR cos θ cosφL
4 sin θ

+ a
GLR sinφL

∆g2

)

W 3µ
1L ≈ Aµ (sin θ sinφL) + Zµ

(

cos θ sinφL − a
sin 4φL cosφL

4 cos θ

)

+Zµ
L

(

cosφL +
a

4
sin 4φL sinφL

)

+ Zµ
R

(

−asin 4φR cos θ sinφL
4 sin θ

− a
GLR cosφL

∆g2

)

W 3µ
1R ≈ Aµ (cos θ sinφR) + Zµ

(

− sin θ sinφR + a
sin 4φR cosφR

4 sin θ

)

(B.17)

+Zµ
L

(

−asin 4φL sin θ sinφR
4 cos θ

+ a
GLR cosφR

∆g2

)

+ Zµ
R

(

cosφR +
a

4
sin 4φR sinφR

)

Bµ
0R ≈ Aµ (cos θ cosφR) + Zµ

(

− sin θ cosφR − a
sin 4φR sinφR

4 sin θ

)

+Zµ
L

(

−asin 4φL sin θ cosφR
4 cos θ

− a
GLR sinφR

∆g2

)

+ Zµ
R

(

− sinφR +
a

4
sin 4φR cosφR

)

,

where the coefficients of Aµ are exact, while the other coefficients are correct to O(a).

C. Fermion Masses and Mixing in the Top Quark Sector

The mass terms for the fermions can be obtained from Eqs. (3.8) and (3.12). We are

assuming that λ3 = 0, and that λ1 and λ2 are small for all fermions, except for the top

quark. Thus, the only Yukawa coupling that is non-negligible is λ1 for the top quark sector,

and the only fermions for which there will be substantial mixing are in the top quark sector.

In addition, this Yukawa term only mixes charge +2/3 quarks, so that we need only be

concerned with them.

There are nine charge +2/3 quarks of each chirality in the top quark sector. Their

mass terms in the Lagrangian are

Ltop sector = −λAf
(

χ̄tA
L χ

tA
R + t̄ALt

A
R

)

− λBf
(

Q̄tB
L QtB

R + χ̄tB
L χtB

R

)

−λCf
(

Q̄tC
L QtC

R + χ̄tC
L χtC

R + φ̄tCL φtCR + t̄CL t
C
R

)

(C.1)

−λ1f
(

t̄ALc+
is√
2

(

Q̄tA
L + χtA

L

)

)(

t̄BRc−
is√
2

(

Q̄tB
R + χtB

R

)

)

+ h.c. ,

where s = sin(
√
2|H|/f) and c = cos(

√
2|H|/f). The fields that come from the ψC multi-

plets are not mixed by the λ1 Yukawa-term. They combine to form four Dirac states with

masses MC = λCf . In addition, we can diagonalize one linear combination of each of the

ψA and ψB fields that do not appear in the λ1 Yukawa-term. Introducing the new linear

combinations,

QtB =
1√
2

(

TB +KtB
)
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χtB =
1√
2

(

TB −KtB
)

tA =
1

√

1− s2/2

(

cTA +
is√
2
KtA

)

(C.2)

χtA =
1

√

1− s2/2

(

cKtA +
is√
2
TA

)

,

we find that the Dirac field KtA = (KtA
L ,KtA

R ) decouples with mass MA = λAf , and the

Dirac field KtB = (KtB
L ,KtB

R ) decouples with mass MB = λBf .

The remaining set of three left-handed and right-handed fermions mix with a mass

lagrangian given by

Ltop mass = −T̄LMtopTR + h.c. , (C.3)

where

TL =







TA
L

TB
L

QtA
L






, TR =







TA
R

TB
R

tBR






, (C.4)

and

Mtop = f









λA −iλ1s
√

1− s2

2 λ1c
√

1− s2

2

0 λB 0

0 λ1
s2√
2

iλ1
sc√
2









. (C.5)

This fermion mass matrix can be diagonalized with a biunitary transformation, VMU †.

To simplify the following expressions, we recall the definition for the top Yukawa coupling,

Eq. (3.15),

λ2t =
λ2Aλ

2
1

λ2A + λ21
. (C.6)

We also define

∆λ2 = λ2A + λ21 − λ2B . (C.7)

Then, to O(s2), we obtain the mass of the light eigenstate (the top quark):

m2
t =

λ2t f
2

2
s2 +

[

λ6t f
2

4λ2Aλ
2
1

− λ4t f
2

2λ21

]

s4 , (C.8)

and the masses of the heavy eigenstates:

mTA′ = (λ2A + λ21)f
2 +

[

−λ
2
t f

2

2
+
λ2Bλ

2
1f

2

∆λ2

]

s2

+

[

− λ6t f
2

4λ2Aλ
2
1

+
λ4t f

2

2λ21
− λ4Bλ

4
1f

2

(∆λ2)3
− λ2Aλ

2
1(λ

2
A − λ2B)f

2

2(∆λ2)2

]

s4 (C.9)

and

mTB′ = λ2Bf
2 +

[

−λ
2
Bλ

2
1f

2

∆λ2

]

s2 +

[

λ4Bλ
4
1f

2

(∆λ2)3
+
λ2Aλ

2
1(λ

2
A − λ2B)f

2

2(∆λ2)2

]

s4 . (C.10)
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To O(s2), the left-handed gauge eigenstates in terms of mass eigenstates are

QtA
L =

(

1− s2

4

λ4t
λ4A

)

tL +
is√
2

λ2t
λ2A

TA′
L +

s2√
2

λ1
λB

λ2A − λ2B
∆λ2

TB′
L , (C.11)

TA
L =

(

1− s2

4

λ4t
λ4A

− s2

2

λ21λ
2
B

(∆λ2)2

)

TA′
L +

is√
2

λ2t
λ2A

tL + is
λ1λB
∆λ2

TB′
L , (C.12)

TB
L =

(

1− s2

2

λ21λ
2
B

(∆λ2)2

)

TB′
L − s2√

2

λ2t
λBλ1

tL + is
λ1λB
∆λ2

TA′
L , (C.13)

while the right-handed gauge eigenstates in terms of mass eigenstates are

tBR = −i λt
λ1

(

1 +
s2

4

λ21(λ
2
1 + 3λ2A)

(λ21 + λ2A)
2

)

tR + is
λ21
∆λ2

TB′
R

+
λt
λA

(

1− s2

2

λ21(λ
2
1 + λ2A)

(∆λ2)2
− s2

4

λ2A(λ
2
1 + 3λ2A)

(λ21 + λ2A)
2

)

TA′
R , (C.14)

TA
R =

λt
λ1

(

1− s2

2

λ21(λ
2
1 + λ2A)

(∆λ2)2
+
s2

4

λ21(λ
2
1 + 3λ2A)

(λ21 + λ2A)
2

)

TA′
R

+i
λt
λA

(

1− s2

4

λ2A(λ
2
1 + 3λ2A)

(λ21 + λ2A)
2

)

tR + is
λ1λA
∆λ2

TB′
R , (C.15)

TB
R =

(

1− s2

2

λ21(λ
2
1 + λ2A)

(∆λ2)2

)

TB′
R + is

λt(λ
2
1 + λ2A)

λA(∆λ2)
TA′
R . (C.16)

D. Higgs Potential for small |H|/f

At small values of the Higgs field H, the one-loop Coleman-Weinberg potential can be

expanded as

V = m2H†H + λ(H†H)2 + · · · , (D.1)

where the coupling λ will also have logarithmic dependence onH†H. Lettingm2 = m2
gauge+

m2
fermion, we have

m2
gauge =

3

64π2

{

3M2
WL
g2L

(

ln
Λ2

M2
WL

− 1

2

)

+M2
ZR
g2R

(

ln
Λ2

M2
ZR

− 1

2

)}

, (D.2)

with M2
WL

=M2
ZL

= (g20L + g21L)f
2/2, M2

WR
= g21Rf

2/2 and M2
ZR

= (g20R + g21R)f
2/2, and

m2
fermion =

3

8π2

{

(

2M2
TB
λ21 −M2

TA
λ2t
)

(

ln
Λ2

M2
TA

− 1

2

)

+
2M4

TB
λ21

M2
TA

−M2
TB

ln
M2

TB

M2
TA

}

, (D.3)

with M2
TA

= (λ2A + λ21)f
2 and M2

TB
= λ2Bf

2.

Expressing the (H†H)2 coupling as λ = λgauge + λfermion, we have

λgauge = − 3

256π2

{

g20L
(

g21L + g21R
)

(

ln
Λ2

M2
WL

+
M2

WR

M2
WR

−M2
WL

ln
M2

WL

M2
WR

− 1

2

)

+2g4L

(

ln
M2

WL

M2
W (H)

− 1

2

)

+

[

4g2LM
2
WL
M2

WR
/f2

M2
WL

−M2
WR

]

ln
M2

WL

M2
WR
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+1
2(g

2
0L + g20R)(g

2
1L + g21R)

(

ln
Λ2

M2
ZL

+
M2

ZR

M2
ZR

−M2
ZL

ln
M2

ZL

M2
ZR

− 1

2

)

+g4L

(

ln
M2

ZL

M2
Z(H)

− 1

2

)

+ g4R

(

ln
M2

ZR

M2
Z(H)

− 1

2

)

(D.4)

+2g2Lg
2
R

(

ln
M2

ZL

M2
Z(H)

+
M2

ZL

M2
ZL

−M2
ZR

ln
M2

ZR

M2
ZL

+
1

2

)

+

[

2(g2L + g2R)M
2
ZL
M2

ZR
/f2

M2
ZL

−M2
ZR

]

ln
M2

ZL

M2
ZR

}

−
m2

gauge

6f2
.

and

λfermion =
3

4π2

{

λ4t
4

(

ln
M2

TA

M2
t (H)

− 1

2

)

− ln(1− x)

[

λ41(2− x)

x3
+
λ21λ

2
t (1− x)

x2
+
λ21λ

2
A

x

]

−
[

2λ41
x2

+
λ21λ

2
t

x

]}

− 2m2
fermion

3f2
, (D.5)

where x = 1 −M2
TA
/M2

TB
. In addition, in the above formulae, we use the field-dependent

masses for the light fields: M2
W (H) = g2L(H

†H)/2, M2
Z(H) = (g2L + g2R)(H

†H)/2, and

M2
t (H) = λ2t (H

†H).

E. Fermion Sector with Complete SO(5) Multiplets and Decoupled SM

Partners

In order to probe the sensitivity of the model to UV completion of the fermion sector,

we consider a modification that leaves the fermion contribution to the effective potential

completely finite at one loop§. First, we make the fields ψA
R and ψB

L into complete SO(5)

multiplets by reinstating the missing SM partners, QA
R and uBL , in Eqs. (3.2) and (3.5).

Then we decouple them by adding two new fermions, Q′A
L and u′BR , which mix via large

mass terms,

∆Lmass = −Λ′
AQ̄

′A
L Q

A
R − Λ′

Bū
B
Lu

′B
R + h.c. . (E.1)

With this modification, the Dirac mass terms proportional to λA and λB of Eq. (3.8) now

preserve both the SO(5)0 and SO(5)1 symmetries, since the Dirac fields ψA and ψB are in

complete SO(5) multiplets. Instead, the collective symmetry breaking occurs through the

Yukawa terms of Eq. (3.12), which break the SO(5)1 symmetry, and the decoupling mass

terms of Eq. (E.1), which break the SO(5)0 symmetry. However, these two symmetry-

breaking terms contain no fermion fields in common; therefore, any one-loop diagram

that contributes to the Higgs potential and breaks both SO(5) symmetries must contain

Dirac mass insertions to mix the fermion fields (in addition to the two symmetry-breaking

insertions). The requirement of the three separate contributions to the one-loop diagrams

renders them completely finite.

§We are grateful to an anonymous referee for suggesting this modification of the fermion sector.
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With the modified fermion sector, the masses of all of the original eigenstates are un-

changed, up to corrections of O(f2/Λ′2
A,B). In addition, there are two new heavy eigenstates

with Higgs-field-dependent masses given by

M2
ΛA

= Λ′2
A + λ2Af

2 +
λ21λ

2
Af

4

Λ′2
A

s2

2
+ · · ·

M2
ΛB

= Λ′2
B + λ2Bf

2 +
λ21λ

2
Bf

4

Λ′2
B

c2 + · · · . (E.2)

where s = sin(
√
2|H|/f) and c = cos(

√
2|H|/f), and we have neglected terms ofO(f6/Λ′4

A,B).

Including the effects of the heavy mass eigenstates in the Coleman-Weinberg effective po-

tential gives a new contribution of

∆Vfermion = − 3

16π2
f4λ21s

2

{

2λ2B

(

ln
Λ2

Λ′2
B

− 1

2

)

− λ2A

(

ln
Λ2

Λ′2
A

− 1

2

)}

. (E.3)

Redefining Λ′
A,B = e−1/4ΛA,B, we obtain

∆Vfermion = − 3

16π2
f4λ21s

2

{

2λ2B ln
Λ2

Λ2
B

− λ2A ln
Λ2

Λ2
A

}

, (E.4)

which is exactly the modified potential studied in section 4. As expected, the dependence

on the UV cutoff Λ in Eq. (E.4) exactly cancels with that from the other fermion fields,

exchanging it for a dependence on the scales ΛA and ΛB .
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